Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME Commun ; 4(1): ycae014, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38419659

RESUMO

Microbial associations that result in phytoplankton mortality are important for carbon transport in the ocean. This includes parasitism, which in microbial food webs is dominated by the marine alveolate group, Syndiniales. Parasites are expected to contribute to carbon recycling via host lysis; however, knowledge on host dynamics and correlation to carbon export remain unclear and limit the inclusion of parasitism in biogeochemical models. We analyzed a 4-year 18S rRNA gene metabarcoding dataset (2016-19), performing network analysis for 12 discrete depths (1-1000 m) to determine Syndiniales-host associations in the seasonally oligotrophic Sargasso Sea. Analogous water column and sediment trap data were included to define environmental drivers of Syndiniales and their correlation with particulate carbon flux (150 m). Syndiniales accounted for 48-74% of network edges, most often associated with Dinophyceae and Arthropoda (mainly copepods) at the surface and Rhizaria (Polycystinea, Acantharea, and RAD-B) in the aphotic zone. Syndiniales were the only eukaryote group to be significantly (and negatively) correlated with particulate carbon flux, indicating their contribution to flux attenuation via remineralization. Examination of Syndiniales amplicons revealed a range of depth patterns, including specific ecological niches and vertical connection among a subset (19%) of the community, the latter implying sinking of parasites (infected hosts or spores) on particles. Our findings elevate the critical role of Syndiniales in marine microbial systems and reveal their potential use as biomarkers for carbon export.

2.
PeerJ ; 10: e14005, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36157057

RESUMO

Microbial interactions have profound impacts on biodiversity, biogeochemistry, and ecosystem functioning, and yet, they remain poorly understood in the ocean and with respect to changing environmental conditions. We applied hierarchical clustering of an annual 16S and 18S amplicon dataset in the Skidaway River Estuary, which revealed two similar clusters for prokaryotes (Bacteria and Archaea) and protists: Cluster 1 (March-May and November-February) and Cluster 2 (June-October). We constructed co-occurrence networks from each cluster to explore how microbial networks and relationships vary between environmentally distinct periods in the estuary. Cluster 1 communities were exposed to significantly lower temperature, sunlight, NO3, and SiO4; only NH4 was higher at this time. Several network properties (e.g., edge number, degree, and centrality) were elevated for networks constructed with Cluster 1 vs. 2 samples. There was also evidence that microbial nodes in Cluster 1 were more connected (e.g., higher edge density and lower path length) compared to Cluster 2, though opposite trends were observed when networks considered Prokaryote-Protist edges only. The number of Prokaryote-Prokaryote and Prokaryote-Protist edges increased by >100% in the Cluster 1 network, mainly involving Flavobacteriales, Rhodobacterales, Peridiniales, and Cryptomonadales associated with each other and other microbial groups (e.g., SAR11, Bacillariophyta, and Strombidiida). Several Protist-Protist associations, including Bacillariophyta correlated with Syndiniales (Dino-Groups I and II) and an Unassigned Dinophyceae group, were more prevalent in Cluster 2. Based on the type and sign of associations that increased in Cluster 1, our findings indicate that mutualistic, competitive, or predatory relationships may have been more representative among microbes when conditions were less favorable in the estuary; however, such relationships require further exploration and validation in the field and lab. Coastal networks may also be driven by shifts in the abundance of certain taxonomic or functional groups. Sustained monitoring of microbial communities over environmental gradients, both spatial and temporal, is critical to predict microbial dynamics and biogeochemistry in future marine ecosystems.


Assuntos
Bactérias , Ecossistema , Bactérias/genética , Archaea/genética , Biodiversidade , Células Procarióticas , Eucariotos/genética
3.
Nat Commun ; 12(1): 6634, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789722

RESUMO

Seasonal shifts in phytoplankton accumulation and loss largely follow changes in mixed layer depth, but the impact of mixed layer depth on cell physiology remains unexplored. Here, we investigate the physiological state of phytoplankton populations associated with distinct bloom phases and mixing regimes in the North Atlantic. Stratification and deep mixing alter community physiology and viral production, effectively shaping accumulation rates. Communities in relatively deep, early-spring mixed layers are characterized by low levels of stress and high accumulation rates, while those in the recently shallowed mixed layers in late-spring have high levels of oxidative stress. Prolonged stratification into early autumn manifests in negative accumulation rates, along with pronounced signatures of compromised membranes, death-related protease activity, virus production, nutrient drawdown, and lipid markers indicative of nutrient stress. Positive accumulation renews during mixed layer deepening with transition into winter, concomitant with enhanced nutrient supply and lessened viral pressure.


Assuntos
Fitoplâncton/fisiologia , Fitoplâncton/virologia , Água do Mar/microbiologia , Oceano Atlântico , Biomassa , Eutrofização , Estações do Ano , Água do Mar/química , Estresse Fisiológico , Fenômenos Fisiológicos Virais
4.
mSphere ; 6(3)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980670

RESUMO

Interactions between phytoplankton and heterotrophic bacteria fundamentally shape marine ecosystems by controlling primary production, structuring marine food webs, mediating carbon export, and influencing global climate. Phytoplankton-bacterium interactions are facilitated by secreted compounds; however, linking these chemical signals, their mechanisms of action, and their resultant ecological consequences remains a fundamental challenge. The bacterial quorum-sensing signal 2-heptyl-4-quinolone (HHQ) induces immediate, yet reversible, cellular stasis (no cell division or mortality) in the coccolithophore Emiliania huxleyi; however, the mechanism responsible remains unknown. Using transcriptomic and proteomic approaches in combination with diagnostic biochemical and fluorescent cell-based assays, we show that HHQ exposure leads to prolonged S-phase arrest in phytoplankton coincident with the accumulation of DNA damage and a lack of repair despite the induction of the DNA damage response (DDR). While this effect is reversible, HHQ-exposed phytoplankton were also protected from viral mortality, ascribing a new role of quorum-sensing signals in regulating multitrophic interactions. Furthermore, our data demonstrate that in situ measurements of HHQ coincide with areas of enhanced micro- and nanoplankton biomass. Our results suggest bacterial communication signals as emerging players that may be one of the contributing factors that help structure complex microbial communities throughout the ocean.IMPORTANCE Bacteria and phytoplankton form close associations in the ocean that are driven by the exchange of chemical compounds. The bacterial signal 2-heptyl-4-quinolone (HHQ) slows phytoplankton growth; however, the mechanism responsible remains unknown. Here, we show that HHQ exposure leads to the accumulation of DNA damage in phytoplankton and prevents its repair. While this effect is reversible, HHQ-exposed phytoplankton are also relieved of viral mortality, elevating the ecological consequences of this complex interaction. Further results indicate that HHQ may target phytoplankton proteins involved in nucleotide biosynthesis and DNA repair, both of which are crucial targets for viral success. Our results support microbial cues as emerging players in marine ecosystems, providing a new mechanistic framework for how bacterial communication signals mediate interspecies and interkingdom behaviors.


Assuntos
Bactérias/metabolismo , Divisão Celular , Fitoplâncton/fisiologia , Percepção de Quorum , Transdução de Sinais , 4-Quinolonas/metabolismo , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Interações Microbianas , Microbiota , Fitoplâncton/genética , Proteômica
5.
mSphere ; 5(3)2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32461270

RESUMO

Syndiniales are a ubiquitous group of protist parasites that infect and kill a wide range of hosts, including harmful bloom-forming dinoflagellates. Despite the importance of parasitism as an agent of plankton mortality, parasite-host dynamics remain poorly understood, especially over time, hindering the inclusion of parasitism in food web and ecosystem models. For a full year in the Skidaway River Estuary (Georgia), we employed weekly 18S rRNA sampling and co-occurrence network analysis to characterize temporal parasite-host infection dynamics of Syndiniales. Over the year, Syndiniales exhibited strong temporal variability, with higher relative abundance from June to October (7 to 28%) than other months in the year (0.01% to 6%). Nonmetric dimensional scaling of Syndiniales composition revealed tight clustering in June to October that coincided with elevated temperatures (23 to 31°C), though in general, abiotic factors poorly explained composition (canonical correspondence analysis [CCA] and partial least-squares [PLS]) and were less important in the network than biotic relationships. Syndiniales amplicon sequence variants (ASVs) were well represented in the co-occurrence network (20% of edges) and had significant positive associations (Spearman r > 0.7), inferred to be putative parasite-host relationships, with known dinoflagellate hosts (e.g., Akashiwo and Gymnodinium) and other protist groups (e.g., ciliates, radiolarians, and diatoms). Positive associations rarely involved a single Syndiniales and dinoflagellate species, implying flexible parasite-host infection dynamics. These findings provide insight into the temporal dynamics of Syndiniales over a full year and reinforce the importance of single-celled parasites in driving plankton population dynamics. Further empirical work is needed to confirm network interactions and to incorporate parasitism within the context of ecosystem models.IMPORTANCE Protist parasites in the marine alveolate group, Syndiniales, have been observed within infected plankton host cells for decades, and recently, global-scale efforts (Tara Ocean exploration) have confirmed their importance within microbial communities. Yet, protist parasites remain enigmatic, particularly with respect to their temporal dynamics and parasite-host interactions. We employed weekly 18S amplicon surveys over a full year in a coastal estuary, revealing strong temporal shifts in Syndiniales parasites, with highest relative abundance during warmer summer to fall months. Though influenced by temperature, Syndiniales population dynamics were also driven by a high frequency of biological interactions with other protist groups, as determined through co-occurrence network analysis. Parasitic interactions implied by the network highlighted a range of confirmed (dinoflagellates) and putative (diatoms) interactions and suggests parasites may be less selective in their preferred hosts. Understanding parasite-host dynamics over space and time will improve our ability to include parasitism as a loss term in microbial food web models.


Assuntos
Dinoflagelados/genética , Dinoflagelados/fisiologia , Ecossistema , Eucariotos/genética , Interações Hospedeiro-Parasita/genética , Animais , Eucariotos/fisiologia , Dinâmica Populacional , RNA Ribossômico 18S/genética , Estações do Ano , Água do Mar/parasitologia , Simbiose
6.
Front Microbiol ; 10: 1546, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354655

RESUMO

In marine waters, ubiquitous reactive oxygen species (ROS) drive biogeochemical cycling of metals and carbon. Marine phytoplankton produce the ROS superoxide (O2 -) extracellularly and can be a dominant source of O2 - in natural aquatic systems. However, the cellular regulation, biological functioning, and broader ecological impacts of extracellular O2 - production by marine phytoplankton remain mysterious. Here, we explored the regulation and potential roles of extracellular O2 - production by a noncalcifying strain of the cosmopolitan coccolithophorid Emiliania huxleyi, a key species of marine phytoplankton that has not been examined for extracellular O2 - production previously. Cell-normalized extracellular O2 - production was the highest under presumably low-stress conditions during active proliferation and inversely related to cell density during exponential growth phase. Removal of extracellular O2 - through addition of the O2 - scavenger superoxide dismutase (SOD), however, increased growth rates, growth yields, cell biovolume, and photosynthetic efficiency (Fv/Fm ) indicating an overall physiological improvement. Thus, the presence of extracellular O2 - does not directly stimulate E. huxleyi proliferation, as previously suggested for other phytoplankton, bacteria, fungi, and protists. Extracellular O2 - production decreased in the dark, suggesting a connection with photosynthetic processes. Taken together, the tight regulation of this stress independent production of extracellular O2 - by E. huxleyi suggests that it could be involved in fundamental photophysiological processes.

7.
Microbiome ; 7(1): 93, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208456

RESUMO

BACKGROUND: Marine bacteria form complex relationships with eukaryotic hosts, from obligate symbioses to pathogenic interactions. These interactions can be tightly regulated by bioactive molecules, creating a complex system of chemical interactions through which these species chemically communicate thereby directly altering the host's physiology and community composition. Quorum sensing (QS) signals were first described in a marine bacterium four decades ago, and since then, we have come to discover that QS mediates processes within the marine carbon cycle, affects the health of coral reef ecosystems, and shapes microbial diversity and bacteria-eukaryotic host relationships. Yet, only recently have alkylquinolone signals been recognized for their role in cell-to-cell communication and the orchestration of virulence in biomedically relevant pathogens. The alkylquinolone, 2-heptyl-4-quinolone (HHQ), was recently found to arrest cell growth without inducing cell mortality in selected phytoplankton species at nanomolar concentrations, suggesting QS molecules like HHQ can influence algal physiology, playing pivotal roles in structuring larger ecological frameworks. RESULTS: To understand how natural communities of phytoplankton and bacteria respond to HHQ, field-based incubation experiments with ecologically relevant concentrations of HHQ were conducted over the course of a stimulated phytoplankton bloom. Bulk flow cytometry measurements indicated that, in general, exposure to HHQ caused nanoplankton and prokaryotic cell abundances to decrease. Amplicon sequencing revealed HHQ exposure altered the composition of particle-associated and free-living microbiota, favoring the relative expansion of both gamma- and alpha-proteobacteria, and a concurrent decrease in Bacteroidetes. Specifically, Pseudoalteromonas spp., known to produce HHQ, increased in relative abundance following HHQ exposure. A search of representative bacterial genomes from genera that increased in relative abundance when exposed to HHQ revealed that they all have the genetic potential to bind HHQ. CONCLUSIONS: This work demonstrates HHQ has the capacity to influence microbial community organization, suggesting alkylquinolones have functions beyond bacterial communication and are pivotal in driving microbial community structure and phytoplankton growth. Knowledge of how bacterial signals alter marine communities will serve to deepen our understanding of the impact these chemical interactions have on a global scale.


Assuntos
4-Quinolonas/farmacologia , Bactérias/metabolismo , Microbiota , Fitoplâncton/efeitos dos fármacos , Percepção de Quorum , Transdução de Sinais , Bactérias/classificação , Proteínas de Bactérias/genética , Clorofila/análise , Recifes de Corais , Oceanos e Mares , Fitoplâncton/microbiologia , Água do Mar/microbiologia
8.
Sci Rep ; 8(1): 15498, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341338

RESUMO

Eukaryotic phytoplankton contribute to the flow of elements through marine food webs, biogeochemical cycles, and Earth's climate. Therefore, how phytoplankton die is a critical determinate of the flow and fate of nutrients. While heterotroph grazing and viral infection contribute to phytoplankton mortality, recent evidence suggests that bacteria-derived cues also control phytoplankton lysis. Here, we report exposure to nanomolar concentrations of 2,3,4,5-tetrabromopyrrole (TBP), a brominated chemical cue synthesized by marine γ-proteobacteria, resulted in mortality of seven phylogenetically-diverse phytoplankton species. A comparison of nine compounds of marine-origin containing a range of cyclic moieties and halogenation indicated that both a single pyrrole ring and increased bromination were most lethal to the coccolithophore, Emiliania huxleyi. TBP also rapidly induced the production of reactive oxygen species and the release of intracellular calcium stores, both of which can trigger the activation of cellular death pathways. Mining of the Ocean Gene Atlas indicated that TBP biosynthetic machinery is globally distributed throughout the water column in coastal areas. These findings suggest that bacterial cues play multiple functions in regulating phytoplankton communities by inducing biochemical changes associated with cellular death. Chemically-induced lysis by bacterial infochemicals is yet another variable that must be considered when modeling oceanic nutrient dynamics.


Assuntos
Fitoplâncton/fisiologia , Pirróis/metabolismo , Estresse Fisiológico , Bactérias/genética , Vias Biossintéticas/genética , Cálcio/metabolismo , Genes Bacterianos , Halogênios/metabolismo , Haptófitas/metabolismo , Concentração Inibidora 50 , Fitoplâncton/efeitos dos fármacos , Pirróis/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
9.
Front Microbiol ; 7: 59, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26870019

RESUMO

Interactions between phytoplankton and bacteria play a central role in mediating biogeochemical cycling and food web structure in the ocean. However, deciphering the chemical drivers of these interspecies interactions remains challenging. Here, we report the isolation of 2-heptyl-4-quinolone (HHQ), released by Pseudoalteromonas piscicida, a marine gamma-proteobacteria previously reported to induce phytoplankton mortality through a hitherto unknown algicidal mechanism. HHQ functions as both an antibiotic and a bacterial signaling molecule in cell-cell communication in clinical infection models. Co-culture of the bloom-forming coccolithophore, Emiliania huxleyi with both live P. piscicida and cell-free filtrates caused a significant decrease in algal growth. Investigations of the P. piscicida exometabolome revealed HHQ, at nanomolar concentrations, induced mortality in three strains of E. huxleyi. Mortality of E. huxleyi in response to HHQ occurred slowly, implying static growth rather than a singular loss event (e.g., rapid cell lysis). In contrast, the marine chlorophyte, Dunaliella tertiolecta and diatom, Phaeodactylum tricornutum were unaffected by HHQ exposures. These results suggest that HHQ mediates the type of inter-domain interactions that cause shifts in phytoplankton population dynamics. These chemically mediated interactions, and other like it, ultimately influence large-scale oceanographic processes.

10.
Front Microbiol ; 6: 1277, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635748

RESUMO

Motility is a key trait that phytoplankton utilize to navigate the heterogeneous marine environment. Quantifying both intra- and inter-specific variability in trait distributions is key to utilizing traits to distinguish groups of organisms and assess their ecological function. Because examinations of intra-specific variability are rare, here we measured three-dimensional movement behaviors and distribution patterns of seven genetically distinct strains of the ichthyotoxic raphidophyte, Heterosigma akashiwo. Strains were collected from different ocean basins but geographic distance between isolates was a poor predictor of genetic relatedness among strains. Observed behaviors were significantly different among all strains examined, with swimming speed and turning rate ranging from 33-115 µm s(-1) and 41-110° s(-1), respectively. Movement behaviors were consistent over at least 12 h, and in one case identical when measured several years apart. Movement behaviors were not associated with a specific cell size, carbon content, genetic relatedness, or geographic distance. These strain-specific behaviors resulted in algal populations that had distinct vertical distributions in the experimental tank. This study demonstrates that the traits of genetic identity and motility can provide resolution to distinguish strains of species, where variations in size or biomass are insufficient characteristics.

11.
J Phycol ; 49(1): 20-31, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27008385

RESUMO

The ability of harmful algal species to form dense, nearly monospecific blooms remains an ecological and evolutionary puzzle. We hypothesized that predation interacts with estuarine salinity gradients to promote blooms of Heterosigma akashiwo (Y. Hada) Y. Hada ex Y. Hara et M. Chihara, a cosmopolitan toxic raphidophyte. Specifically, H. akashiwo's broad salinity tolerance appears to provide a refuge from predation that enhances the net growth of H. akashiwo populations through several mechanisms. (1) Contrasting salinity tolerance of predators and prey. Estuarine H. akashiwo isolates from the west coast of North America grew rapidly at salinities as low as six, and distributed throughout experimental salinity gradients to salinities as low as three. In contrast, survival of most protistan predator species was restricted to salinities >15. (2) H. akashiwo physiological and behavioral plasticity. Acclimation to low salinity enhanced H. akashiwo's ability to accumulate and grow in low salinity waters. In addition, the presence of a ciliate predator altered H. akashiwo swimming behavior, promoting accumulation in low-salinity surface layers inhospitable to the ciliate. (3) Negative effects of low salinity on predation processes. Ciliate predation rates decreased sharply at salinities <25 and, for one species, H. akashiwo toxicity increased at low salinities. Taken together, these behaviors and responses imply that blooms can readily initiate in low salinity waters where H. akashiwo would experience decreased predation pressure while maintaining near-maximal growth rates. The salinity structure of a typical estuary would provide this HAB species a unique refuge from predation. Broad salinity tolerance in raphidophytes may have evolved in part as a response to selective pressures associated with predation.

12.
PLoS One ; 7(9): e46438, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029518

RESUMO

In the plankton, heterotrophic microbes encounter and ingest phytoplankton prey, which effectively removes >50% of daily phytoplankton production in the ocean and influences global primary production and biochemical cycling rates. Factors such as size, shape, nutritional value, and presence of chemical deterrents are known to affect predation pressure. Effects of movement behaviors of either predator or prey on predation pressure, and particularly fleeing behaviors in phytoplankton are thus far unknown. Here, we quantified individual 3D movements, population distributions, and survival rates of the toxic phytoplankton species, Heterosigma akashiwo in response to a ciliate predator and predator-derived cues. We observed predator-induced defense behaviors previously unknown for phytoplankton. Modulation of individual phytoplankton movements during and after predator exposure resulted in an effective separation of predator and prey species. The strongest avoidance behaviors were observed when H. akashiwo co-occurred with an actively grazing predator. Predator-induced changes in phytoplankton movements resulted in a reduction in encounter rate and a 3-fold increase in net algal population growth rate. A spatially explicit population model predicted rapid phytoplankton bloom formation only when fleeing behaviors were incorporated. These model predictions reflected field observations of rapid H. akashiwo harmful algal bloom (HAB) formation in the coastal ocean. Our results document a novel behavior in phytoplankton that can significantly reduce predation pressure and suggests a new mechanism for HAB formation. Phytoplankton behaviors that minimize predatory losses, maximize resource acquisition, and alter community composition and distribution patterns could have major implications for our understanding and predictive capacity of marine primary production and biochemical cycling rates.


Assuntos
Proliferação Nociva de Algas , Fitoplâncton/crescimento & desenvolvimento , Estramenópilas/fisiologia , Cilióforos , Reação de Fuga , Fitoplâncton/citologia , Fitoplâncton/fisiologia , Salinidade , Estramenópilas/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...